Phytocannabinoids

HeatDrying.jpg

   THC (tetrahydrocannabinol) and CBD (cannabidiol) are the most known cannabinoids, followed by CBG (cannabigerol), CBC (cannabichromene), and CBN (cannabinol). Cannabis plants do not directly produce these cannabinoids, instead synthesizing the cannabinoid acid CBGA, which is the chemical precursor to THCA, CBDA, and CBCA. Specific enzymes inside the plant break down most of the CBGA and direct it toward one of the previously mentioned cannabinoid acid lines.

Enzymes.jpg

   Alternatively, CBNA, the precursor to the very sedative cannabinoid CBN, is synthesized through decomposition of THCA, that happens over time, from exposing dried cannabis to air. Similarly, CBNA must be decarboxylated to yield CBN.

THC_molecule.JPG

   THC is the most active of all cannabinoids, and it’s the molecule responsible for the feeling of being “high.” THC can activate CB1 and CB2 endocannabinoid receptors, as well as other receptors in the body, making it very pharmacologically powerful. 
 

   THC is a psychoactive cannabinoid, and by activating certain CB1 receptors in our central nervous system it can affect temporary changes in perception, mood, consciousness, and behavior. Consumption of THC can be intoxicating, inducing feelings of euphoria and enhanced

senses.


   Studies of the use isolated THC have shown it can offer relief from muscles spasms, convulsions, pain, and inflammation, with studies showing it to have 20 times the inflammatory power of aspirin, and double the power of hydrocortisone. One study showed THC to have positive effects on the inflammation and itch of contact dermatitis, both locally and internally via CB1 and CB2 receptors. One way THC has been shown to affect pain is by stimulating the production of beta-endorphin, a neurotransmitter and hormone, produced in the pituitary gland, that is a powerful at pain suppression. Additionally, THC has been found to be a bronchodilator, and is neuroprotective antioxidant by regulating glutamate production. Glutamate is a powerful neurotransmitter that at normal levels is crucial for brain function, but at too high levels can become toxic and cause cellular damage.

   THC is known to stimulate the appetite, by binding to and activating CB1 receptors, in the brain
and gut, that deal with hunger, satiety, and food palatability. THC’s activity on different CB1 receptors and intracellular pathways increases levels of the hormone
ghrelin, which stimulates the appetite, increases food intake, and promotes fat storage, partially accounting for “the munchies” many people experience with
consuming cannabis. THC may be able to reduce
nausea and vomiting by activating certain CB1 receptors in the brain and gut. By activating CB1 receptors that deal with our cycadean rhythm, THC has the potential to be very sedative.
 
   Studies of isolated THC have also shown it can be
valuable in cancer treatmentnot only for its palliative, appetite stimulating, and antiemetic actions,
but also for its antitumor activity. THC is currently being studied for its potential to
impair tumor progression, through inducing cancer cell death (apoptosis), and inhibiting tumor cell proliferation and invasion.

   While THC has a rich therapeutic value, it also has the potential to cause
unwanted side effects when consumed in larger amounts. Some people report feeling anxious
and paranoid, after smoking THC rich cannabis or eating a strong edible. THC is also known to cause
short-term memory loss, as it temporarily reduces the activity of the neurotransmitter acetylcholine, in the brain.

  Dried cannabis flower is rich in THC’s biological precursor
THCA which unlike THC, is not psychoactive. It’s been shown to have therapeutic value in relieving insomnia, inhibiting cancer cell growth, suppressing muscles spasms, increasing appetite, and acting as a neuroprotective agent, by activating mostly CB2 receptors, without altering the mind. Most people are not able to access the THCA in their cannabis, as it is converted to THC when heat is applied. If the possible therapeutic effects of isolated THCA are
desired, isolated versions can be found in patch, tincture, and topical forms.

Decarboxylation.jpg
WeddingCrasher_Paris2.jpg

The Basics:

   The resulting cannabinoid acids, THCA, CBDA, and CBCA, and the leftover CBGA must be activated through a process known as decarboxylation to produce the sought after cannabinoids THC, CBD, CBC, and CBG. Decarboxylation of cannabinoids happens naturally over time through drying and curing, and with the application of heat, such as smoking, vaporizing, and baking.

*NOTE ABOUT POTENCY:

When we discuss the potency of our Higher Grade strains, we are referring to the Total THC, THC and THCA content in percentage values. According to the US Department of Agriculture’s 2019 Hemp Rules, a sample’s “Total THC” potency is calculated at a conversion rate of 87.7% THCA to THC.

TOTAL THC POTENCY = (%THCA ).877 + (%THC)

We also provide a percentage value for total CBD, if there is any detectable amount, as well as any notable amounts of other cannabinoids that show up in our lab test results.

CBD_molecule.jpg

   CBD is the most commonly found phyto-cannabinoid in hemp varieties, with smaller amounts found in modern cannabis strains. Next to THC, it’s the most widely studied
cannabinoid and its popularity has skyrocketed in over the last few years. Isolated CBD infused products are available to purchase in places like grocery stores, pet stores, boutiques, and stand-alone CBD retail stores. CBD is a powerful cannabinoid; however, it is not psychoactive or

mind-altering, like THC. 

   Unlike THC, CBD does not directly activate CB1 receptors, and in the presence of THC, CBD can
reduce THC’s ability to stimulate them by blocking the receptors. This activity means that CBD may help mitigate the adverse effects of too much THC, like memory loss, elevated heartrate, hunger and anxiety. CBD does not activate our CB2 receptors either, but rather interacts with
them in a way that decreases the activity of the receptor. This action is considered one of ways CBD is involved in decreasing inflammation. CBD interacts with our ECS by regulating the absorption of our own endocannabinoids, anandamide and adenosine. CBD is able to modulate multiple non cannabinoid receptors and ion channels, extending its therapeutic activity beyond our ECS, and interacting with our opioid, serotonin, and dopamine
receptors
, as well as enhancing norepinephrine activity.

Granola_Funk_Paris1.jpg
DesertRuby.jpg

   Studies of isolated CBD have shown it to aid in relaxation and reduce anxiety, by activating 5-HT serotonin receptors. CBD can also affect nausea and vomiting through its interaction with the same serotonin receptors in the brain and gut. It can be a neuroprotective agent, as it is able to protect neurons from glutamate toxicity, which is
associated with neurogenerative diseases like Alzheimer’s and
Huntington’sCBD is considered to be a far more potent antioxidant than Vitamin C (ascorbate) or
Vitamin E (tocopherol). CBD can be a powerful
antibacterial and antifungal agent, with some studies even showing it to have a powerful effect against MRSA. Through desensitizing certain receptors in the body that deal with pain perception, CBD has great potential to aid in pain relief.


   CBD has shown to be a powerful anti-convulsant as well and is being studied as a possible therapeutic agent for treating epilepsy. Like THC, CBD is being extensively studied for its potential cancer fighting value. Different studies of CBD’s effect on cancer cells show in some cases it is a potent inhibitor of cancer cell growth and invasion, as
well as an inducer of cancer cell death.

CBC.jpg

   CBC is another major cannabinoid that stems from the cannabinoid acid CBGA. It binds poorly to CB1 receptors in the brain and does not produce psychoactive effects. CBC interacts very well with the receptors in the body that are linked to pain perception, showing promise as effective pain reliever. Lab studies of CBC show it to be a powerful uptake inhibitor of anandamide, meaning it
prevents the quick breakdown of the endocannabinoid, allowing more to remain in the blood stream. Anandamide is an endocannabinoid and a neurotransmitter that is created in parts of the brain that deal with memory, motivation, movement control, and complex thought processes, and it exhibits antianxiety and antidepressant effects. Studies of anandamide have shown it to have strong activity against breast cancer cells, and because the presence CBC increases the amount of the endocannabinoid, CBC could be a chemoprotective agent.

   CBC has also been shown to be a powerful anti-inflammatory agent, internally and topically.
CBC also suppresses excessive lipid production in the sebaceous glands and is being studied as a potential acne treatment. Research on isolated CBC has shown it has a positive effect on cells essential to healthy brain function, helping to combat the oxidative stress, toxicity and inflammation that lead to neurogenerative diseases
like Alzheimer’s. The CBCA found in raw cannabis has been shown to be antimicrobial and anti-inflammatory, and like other cannabinoid acids, isolated versions can be found in capsules, topicals, and tinctures.

CBG_molecule.jpg

   CBG is present in very low levels in most cannabis strains, as most of its chemical parent CBGA
is directed toward synthesizing THCA, CBDA, and CBCA. Any leftover CBGA becomes CBG when
it is decarboxylated by heat or over time through drying. Recent studies are showing that CBG
has much potential as a therapeutic agent, and should not be overlooked as an important
cannabinoid. CBG was very weak activity with our CB1 receptors and is not psychoactive. CBG is showing lots of promise as anti-cancer agent, with some
studies showing it to have strong activity against certain types of colon cancer, soft tissue cancer and breast cancer.
CBG has shown value as an effective treatment of glaucoma because it acts on the endocannabinoid
receptors in the eye to reduce intraocular pressure


   It has been used to successfully treat fungal growth and
bacterial infections like MRSA. Research has shown CBG to offer relief from pain and inflammation, and have muscle relaxing properties stronger than THC. Like other cannabinoids, CBG is a strong anandamide (AEA) uptake
inhibitor
, allowing more to remain in the bloodstream, to be utilized by the ECS. CBG may be a future treatment in bladder disorders, as studies have shown it to reduce contractions in the human bladder. CBGA, the chemical precursor to the other major cannabinoid acids, as it is found in raw cannabis, has been shown to reduce oxidative stress associated with cardiovascular and other diseases, and is currently being studied for its great potential as a therapeutic agent in other issues. With the recent buzz around CBG, cultivators have started to
experiment with breeding high CBGA strains, which like high CBDA strains, will not get you “high”, but could have great therapeutic value. CBGA can be extracted from cannabis plants a few weeks into flower, and made into CBGA/CBG tinctures, topicals, patches, and capsules.

CBN.jpg

   CBN is a very sedative cannabinoid, with a slight affinity for CB1 receptors, making it mildly psychoactive, especially in the presence of THC. CBN has great affinity for CB2 receptors in the body, which are primarily in the peripheral nervous system and affect our major organs and
systems. Research on CBN is still very limited however, it has demonstrated anti-convulsant and anti-inflammatory effects, as well as strong activity against MRSA. It
may promote bone formation by its ability to stimulate the inactive stem cells in marrow that differentiate into a variety of cell types like bone cells, cartilage cells, and muscle cells. Limited studies have shown CBN to stimulate the concentration and production of multiple hormones like follicle-stimulating hormone, and testicular testosterone.


   CBN does not stem from the enzymatic breakdown of CBGA, and should be understood as the oxidative by-product of THC. CBNA, unlike the other major cannabinoid acids, comes from breakdown of THCA due to prolonged
exposure to air or oxidation. The resulting CBNA becomes CBN when it is decarboxylated during consumption. If the potentially powerful and sedative effects of CBN are what you are after, leave some of your flower unsealed and exposed to the air and let the THCA convert naturally
to CBNA, or search out tinctures, capsules, or topicals with isolated versions.

*DISCLAIMER
Higher Grade is a team of cultivators and purveyors of high quality cannabis. We are not medical professionals and are in no way offering a medical recommendation. The conversation we are having about cannabis is a mix of research findings and anecdotal evidence, and our goal is to help bridge the gap between science and culture. The information we provide is not meant to diagnose, treat, or cure any
medical issue. Federal prohibition has severely limited cannabis research, and we recognize and emphasize the need for more.